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Abstract

The earlier work on the vibrational dynamics of trans-1,4-polyisoprene (b-TPI) suffered from several infirmities. This work has been redone

with all infirmities removed. It not only leads to a few different assignments but also better values of interactive constants. Two significant

outcomes of the present work are; one change in the profile of the dispersion curves and repulsion between the two acoustic modes at the phase

values away from the zone center. The present work leads to a fuller interpretation of observed spectra. Several observed unassigned modes have

been accounted for due to the presence of regions of high density-of-states such as von Hove type singularities. Predictive values of heat capacity

as a function of temperature are reported.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In our earlier publications [1–4] in this journal we have

reported several studies on the vibrational dynamics of a

variety of polymeric systems including synthetic polymers. In

continuation to this work, we report here phonon dispersion in

an important industrial polymer namely, trans-1,4-polyiso-

prene (TPI). Polyisoprene is an important polymer widely used

in the industry. It finds use in thermoplastic materials used for

making telephone hand sets, refrigerator liners safety helmets,

radio components, roofing, flooring paints, adhesives.

Recently, structural and dynamical behavior of TPI on the

local scale has been reported by several workers [5–8].

Raman and infrared (IR) spectroscopic methods have been

widely used to study elastomers and polymerized 1,3-dienes in

order to determine quantitatively the polymer microstructure.

When mono-substituted 1,3-dienes (isoprene) is polymerized,

four different structural units may be formed, namely: cis-1,4,

trans-1,4, 1,2-vinyl and 3,4-vinyl. These four possible

structures arise from the different polymerization routes. TPI

belongs to natural rubber group with general structure (–CH2–

CH3aCH–CH2–)n. It precipitates from various solvents as

single lamellas with crystalline cores and amorphous surfaces

or as multilamellar structures depending on crystallization
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conditions. The nature of the fourfold surface has been

investigated by using quantitative chemical reactions in

suspension coupled with carbon-13 NMR analysis [9,10].

TPI can exist in two distinct crystalline phases, namely the

alpha (a-TPI) and beta (b-TPI) polymorphic forms [11–13].

The a-form has a monoclinic cell with two chains, each

containing two repeat units. The b-form has an orthorhombic

unit cell with four chains, each containing one repeat unit and

c-axis fiber repeat distance of 4.70 Å. Crystal structure of

b-TPI has been determined by Bunn [14], from X-ray

diffraction. Takahashi et al. [15] have also reported the

structure of TPI with better resolution for both a- and

b-polymorphic forms.

First extensive IR study of synthetic polyisoprene was

reported by Binder [16] and several others [17–19] and the

assignments from this work were applied to interpret spectro-

scopic data on natural rubber. Gavish et al. [20] and Mohan

et al. [21] have reported a qualitative study of the normal

modes of b-TPI using generalized valence force field (GVFF).

No dispersion of normal modes is reported. Such studies are

reported only by Petcavich et al. [22]. However, they have also

used GVFF, which does not take into account non-bonded

interactions both in gem and tetra positions and tension terms.

Over and above this these authors as well as Gavish et al. [20]

have reported only the initial field, which they have transferred

from trans-1,4-polybutadiene and later refined it. However,

none of them have reported the final refined field and this

makes a comparison of two fields impossible. This omission

hides several features in dispersion profiles and affects the
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absorption bands arising from the regions of the high density-

of-states and their contribution to heat capacity via density-

of-states. Thus, a fuller interpretation of IR and Raman

demands a relook of the vibrational dynamics of b-TPI.
Recently, Mohan et al. [21] have reported a qualitative Raman

and IR analysis of TPI. However, this paper is a little

ambiguous because it is nowhere stated whether the sample

which they have studied belongs to the a or the b form or

whether it is a mixture of both. It is, therefore, difficult to make

any pertinent comment on this work because the spectra

reported may be a superposition of both the species. Lack of

information on dispersive behavior of normal modes in many

polymeric systems has been responsible for incomplete

understanding of polymeric spectra.

In the present communication, a detailed comparative study

of both polymorphic forms including dispersion curves is

presented using Urey Bradley force field. Predictive values of

heat capacity in the 10–550 K are presented and a comparative

study of the b polymorphic form and a polymorphic form is

made to identify the structure-related spectral differences.

These are found to be in good agreement with the experimental

data. To the best of our knowledge such detailed studies

leading to correlation between the microscopic behavior and

macroscopic properties have not yet been reported in literature.

In general, the IR, Raman spectra and inelastic neutron

scattering from polymeric systems are very complex and

cannot be unraveled without the full knowledge of dispersion

curves. One cannot appreciate without it the origin of both

symmetry dependent and symmetry independent spectral

features. Further the presence of regions of high density-

of-states, which appear in all these techniques and play an

important role in thermodynamical behavior, can be studied

only from dispersion curves. In this context it may be added

that for a fuller justification, one should obtain dispersion

curves for a three-dimensional Brillion-Zone with inter-

molecular interactions. Thus, the present work is an approxi-

mate calculation of the real 3D problem, which is

computationally difficult not only because of the dimension-

ality of the secular matrix but also becomes very large and the

interactions increase very rapidly and they are even difficult to

visualize.
2. Theory

2.1. Calculation of normal mode frequencies

Normal mode calculation for an isolated polymeric chain

was carried out using Wilson’s GF matrix [23] method as

modified by Higgs [24] for an infinite polymeric chain. The

vibrational secular equation to be solved is

jGðdÞFðdÞKlðdÞIjZ 0 0%d%p (1)

where d is the phase difference between the modes of adjacent

chemical units, G(d) matrix is derived in terms of internal

coordinates and inverse of it is kinetic energy and F(d) matrix

is based on Urey Bradley force field [25] which has certain
advantages over other type of force field; such as valence force

field, generalized force field.

1. Relatively less parameter are required to express the

potential energy.

2. No quadratic cross terms are included in the potential

energy expression. The interaction between non-bonded

atoms includes these terms.

3. Arbitrariness in choosing the force constant is reduced.

The frequencies ni in cmK1 are related to eigen values by

liðdÞZ 4p2c2n2i ðdÞ: (2)

A plot of ni(d) versus d gives the dispersion curve for the ith

mode. The use of the type of force field is generally a matter of

one’s chemical experience and intuition. In the present work

we have used Urey Bradley force field [25] that is more

comprehensive then valence force field. Recently, spectro-

scopically effective molecular mechanics model have been

used for inter and intra molecular interactions consisting of

charges, atomic dipoles and Vander Waals interactions [26].
2.2. Force constant evaluation

The force constants have been obtained by the least square

fitting. In order to obtain the ‘best fit’ with the observed

frequencies, the following procedure is adopted. Initially,

approximate force constants are transferred from trans-1,4-

polybutadiene [27]. Thus, starting with the approximate F

matrix F0 and the observed frequencies lobs (related through a

constant). One can solve the secular matrix equation:

GF0L0 Z L0l0 (3)

Let DliZliobsKli0 in the above equation. It can be shown

that in the first order approximation

DlZ jDF (4)

where j is computed from L0. We wish to compute the

corrections to F0 so that the errors Dl are minimized. We use

the theory of least square and calculate

j0pDl Z ðj0pjÞDF (5)

where p is a weighting matrix and j 0 is the transpose of j. The

solution to this equation is obtained by inverting j 0pj to give

DF Z ðj0pjÞK1j0pDl (6)

If the number of frequencies is greater than the number of F

matrix elements, the matrix j 0pj should be non-singular and we

obtain the corrections DF, which will minimize the sum of the

weighted squares of the residuals. If the corrections DF are

fairly large, the linear relation between force constant and

frequency term in the matrix Eq. (a) breaks down. In such a

situation, further refinement using higher order terms in

Taylor’s series expansion of Dli is needed. This procedure is

developed by King et al. [28].
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Fig. 1. One chemical repeat unit of b-TPI.

Table 1

Internal co-ordinates and Urey Bradley force constants (mdyn Ao)

Internal co-ordinates Force constants

n(CaCa) 6.290

n(Ca–H) 4.670

n(Ca–Cb1) 3.190

n(Cb1–H) 4.070
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2.3. Calculation of specific heat

Dispersion curves can be used to calculate the specific heat

of a polymeric system. For a one-dimensional system the

density of state function or the frequency distribution function

expresses the way energy is distributed among the various

braches of normal modes in the crystal, is calculated from the

relation

gðnÞZS½ðvnj=vdÞ
K1�njðdÞZnj

(7)

The sum is over all the branches j. Considering a solid as an

assembly of harmonic oscillators, the frequency distribution

g(n) is equivalent to a partition function. The constant volume

heat capacity can be calculated using Debye’s relation

Cv ZSgðnjÞKNAðhnj=KTÞ2½expðhnj=KTÞ=fexpðhnj=KTÞK1Þg2�

with

ð
gðniÞdni Z 1 ð8Þ

3. Results and discussion

The b-form of TPI has planar structure with orthorhombic

unit cell with four chains, each containing one repeat unit. The

line group of an isolated chain of b-TPI is isomorphs to the

point group Cs. The distribution of the normal modes among

the irreducible representation for the Cs symmetry is shown

below.

Cs E sxy NA OA

A 0 1 1 Tx, Ty, Rz, axx, ayy, azz, axy 25 22

A 00 1 K1 Tz, Rx, Ry, ayz, azz 14 13
n(Cb1–Cb2) 3.480

n(Cbb2–H) 4.020

n(Cb2–C) 2.990

n(C–Cg) 0.520

n(Cg–H) 4.240

f(CaCa–H) 0.349 (0.079)

f(H–Ca–Cb1) 0.251 (0.100)

f(CaCa–Cb1) 0.677 (0.450)

f(Ca–Cb1–Cb2) 0.790 (0.200)

f(Ca–Cb1–H) 0.436 (0.300)

f(H–Cb1–H) 0.322 (0.560)

f(H–Cb1–Cb2) 0.320 (0.320)

f(Cb1–Cb2–H) 0.358 (0.150)

f(H–Cb2–H) 0.310 (0.364)

f(Cb1–Cb2–C) 0.899 (0.350)

f(H–Cb2–C) 0.582 (0.600)

f(Cb2–C–Cg) 0.970 (0.339)

f(Cg–CaCa) 0.990 (0.400)

f(Cb2–CaCa) 0.839 (0.225)

f(C–Cg–H) 0.489 (0.210)

f(H–Cg–H) 0.386 (0.200)

u(H–C) 0.319 (0.290)

u(Cg–C) 0.320

t(Ca–Cb1) 0.009

t(Cb1–Cb2) 0.013

t(C–Cg) 0.010

t(CaCa) 0.004

Note: n, f, u, t denote stretch, angle bend, wag and torsion, respectively.

Stretching force constants between the non-bonded atoms in each angular

triplet (gem configuration) are given in parentheses.
T’s and a’s are dipole and polarizability components. R

stands for rotation. NA, number of normal modes, OA, optically

active modes.

Tvib Z 25A0 C14A00

Since, there are four repeat units in the unit cell, we have

4!6K3Z21 external optical vibrations or ‘lattice modes’.

Similar calculations can be made for a-TPI. It may be

mentioned here that correlation exists between the observed

frequencies for the two crystal forms. Each vibrational band in

the spectrum for the b-form is correlated to a singlet in a few

cases or to a doublet in the majority of cases in the spectrum of

the b-form. Such correlation exists even in the amorphous

region. It may be added here that we are dealing with an

isolated chain, which has a Cs factor group symmetry having

only A 0 and A 00 as symmetry species. The site group is

necessarily a subgroup of the molecular point group, which

describes the symmetry of the free molecule. Hence no

additional useful information can be obtained from further

symmetry considerations.

The structural repeat unit of b-TPI possesses 13 atoms

(Fig. 1), which give rise to 39 dispersion curves. Structural

parameters are taken from the work of Gavish et al. [20].

The force constants (Table 1) initially transferred from trans-
1,4 polybutadiene [27] and modified as given earlier to give the

‘best fit’ to the observed data [20,21] at the zone center. The

frequencies of vibration have been calculated at phase values

ranging from 0 to p at intervals of 0.05p. Since, all the modes

above 1410 cmK1 are non-dispersive in nature, hence the

dispersion curves are plotted only for the modes below

1410 cmK1, in Figs. 2(a) and 3(a). The matched frequencies

along with their potential energy distribution (PED) are given

in Tables 2 and 3. The four modes for which u/0 as d/0 are



Table 2

Non-dispersive modes of b-TPI

Frequency (cmK1) Assignment (% PED) at dZ0

Calculated Observed

IRa Ramanb

3022 3022 3020 n[Ca–H](100)

2966 2965 2962 nas[Cg–H](100)

2924 2943 2930 nas[Cb1–H](79)Cn[Cb2–H](20)

2914 2914 2912 nas[Cb2–H](79)Cn[Cb1–H](20)

2896 2906 2880 ns[Cg–H](100)

2894 2906 2880 ns[Cg–H](100)

2860 2855 – nas[Cb1–H](100)

2841 2846 2845 nas[Cb2–H](100)

1666 1664 1666 n[CaCa](43)Cf[CaCa–H](16)

Cf[H– Ca–H](11)

1452 1450 1460 f[Cb1–Cb2–H](29)Cf[H–Cb1–H](28)C

f[H– Cb2C](47)

1443 1450 1445 f[H–Cg–H](92)Cf[C–Cg–H](6)

1434 1430 1432 f[H–Cb2–H](33)Cf[H–Cb2–C](27)C

f[H– Cb1–H](17)

a Observed frequencies are from Ref. [12].
b Observed frequencies are from Ref. [14].
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Fig. 2. (a) Dispersion curves of b-TPI. (b) Density-of-states of b-TPI below

800 cmK1.
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called acoustic modes. They are due to translations (one

parallel and two perpendiculars to the chain axes) and one due

to rotation around the chain axis. The agreement between the

observed and calculated frequencies is good. The assignments

are made on the basis of normal mode calculation, band

position, band profile, intensity and appearance/disappearance

of similar modes placed in identical environment. For

simplicity modes are discussed in two separate sections viz.

non-dispersive modes (Table 2) and dispersive modes

(Table 3).
3.1. Non-dispersive modes

In general, the non-dispersive modes (Table 2) are the ones

that are highly localized in nature. The free stretching modes

generally fall in this region; e.g. C–H stretch. CH2 symmetric

and asymmetric stretches appear at (2860, 2841) cmK1 and

(2924, 2914) cmK1, respectively, and they have little

dispersion. Since, the molecule contain two CH2 groups and
800

900

1000

1100

1200

1300

1400

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Phase factor (δ/π)

F
re

qu
en

cy
 (

cm
–1

)

Density-of-states g(ν)

Fig. 3. (a) Dispersion curves of b-TPI. (b) Density-of-states of b-TPI (800–

1410 cmK1).
hence the absorption bands appear in pairs. They are slightly

displaced from each other because of their placement in

different environment and nearness to the CH3 group. The other

pair frequency is given in the parenthesis. The frequencies have

been identified with the observed frequencies at (2855, 2846)

cmK1 and (2943, 2914) cmK1. Similarly, CH3 symmetric and

asymmetric stretches (degenerate) are also non-dispersive and

appear close to the observed frequencies as shown in Table 2. It

is well established that the deformation vibration d(CH2) gives

rise to absorption in the region 1500–1400 cmK1. CH2

deformation modes are calculated at 1452 and 1436 cmK1

that corresponds to the peaks at 1450 and 1430 cmK1 in IR

spectra. As commented earlier, difference between these modes

is due to the different environmental placement of two CH2

groups.
3.2. Dispersive modes

The modes, which are not localized in nature and are

strongly coupled, electrically, mechanically or both show

appreciable dispersion, e.g. torsional modes are strongly

coupled to the neighboring unit. The actual dispersion of

modes is discussed in Section 3.4.

For b-TPI the band at 1348 cmK1 was previously assigned

by Petcavich et al. [22] to CH2 wagging and twisting, whereas

in the present work it is found to be a mixed mode containing

CH2 twisting and C–C stretching. In fact, CH2 twisting and

CH2 wagging mode occurs at 1260 cmK1 in IR spectra and

calculated at the same value in the present work. The rocking

mode of CH2 group gives rise to the medium intensity band at

750 cmK1 in infrared and a weak band at 751 cmK1 in Raman

spectra, as shown in Table 3.

The symmetrical methyl deformation mode d(CH3) is

observed at 1384 cmK1 in IR and 1386 cmK1 in Raman

spectra. It is calculated at 1389 cmK1; whereas asymmetric



Table 3

Normal modes and their dispersion in b-PTI

Calculated

frequency

Observed

frequency

Assignment (dZ0) PED (%) Calculated

frequency

Observed

frequency

Assignment (dZp) PED (%)

IR Raman IR Raman

1389 1384 1386 f[C–Cg–H](49)Cf[H–Cg–H](42) 1384 1384 1386 f[C–Cg–H](53)Cf[H–Cg–H](45)

1348 1348 1350 f [Cb1–Cb2–H](30)Cn[Cb1–Cb2](22)C

f[H–Cb2–H](20)

1341 1348 1350 f [Cb1–Cb2–H](29)Cn[Cb1–Cb2](19)C

f[H–Cb2–H](16)

1325 1324 1325 f[H–Cb2–C](32)Cf[CaCa–H](18)Cn[Ca

Ca](9)

1329 1324 1325 f[H–Cb2–C](32)Cf[CaCa–H](28)

1278 1280 1280 f[Ca–Cb1–H](22)Cf[H–Cb1–Cb2](21)C

nas[Cb1–Cb2](13)

1277 1280 1280 f[H–Cb1–Cb2](21)Cf[Ca–Cb1–

H](18)Cf[H–Cb1–H](15)

1260 1260 – f[Ca–Cb1–H](51)Cf[H–Cb2–C](10) 1268 1260 – f[Ca–Cb1–H](25)Cf[H–Cb2–C](18)C

f[Cb1–Cb2–H](13)

1211 1212 1210 f[H–Ca–Cb1](18)Cf[CaCa–H](17)C

f[H–Cb2–C](16)

1214 1212 1210 f[Ca–Cb1–H](42)Cf[H–Cb2–C](29)C

f[CaCa–H](17)

1152 1150 1151 n[Ca–Cb1](20)Cf[Ca–Cb1–H](18)C
f[Cb1–Cb2–H](10)

1220 1150 1151 n[Cb2–C](34)Cn[Ca–Cb1](14)Cf[Cb1–

Cb2–C](9)

1107 1107 1109 n[Ca–Cb1](63)Cn[Cb2–C](28)Cf[C–Cg–

H](10)

1102 1107 1109 n[Ca–Cb1](39)Cf[Ca–Cb1–H](10)

1034 1058 1038 f[C–Cg–H](29)Cu[H–Ca](12)Cf[H–Cb1–

Cb2](12)

1021 1058 1038 f[C–Cg–H](29)Cn[Cb1–Cb2](19)C
f[H–Cb1–Cb2](7)

993 997 1000 f[C–Cg–H](39)Cn[Cb1–Cb2](35) 1006 997 1000 f[C–Cg–H](39)Cn[Cb1–Cb2](19)C

f[H–Cb1–Cb2](11)

950 978 980 f[C–Cg–H](39)Cu[H–Ca](23)Cf [Cb1–

Cb2–H](15)

958 978 980 f[C–Cg–H](41)Cf [Cb1–Cb2–H](13)C
n[Cb2–C](10)

936 962 – f[C–Cg–H](61)Cn[Cb2–C](22) 937 962 – f[Cb1–Cb2–H](13)Cf[C–Cg–H](18)C

u[H–Ca](18)

879 877 878 u[H–Ca](37)Cf[Cb1–Cb2–H](23)Cf[H–

Cb2–C](14)

923 877 878 u[H–Ca](37)Cf[C–Cg–H](18)

751 750 751 f[H–Cb1–Cb2](52)Cf[Cb1–Cb2–H](13) 730 750 751 f[H–Cb1–Cb2](53)Cf[Cb1–Cb2–H](15)

685 600 602 f[Cb1–Cb2–C](20)Cf[C–CgaCa](13)C
f[H–Cb1–Cb2](10)600

600 600 602 f[Cb1–Cb2–C](20)Cn[Ca–Cb1](14)C
f[Cg–CaCa](13)

476 474 475 u[Cg–C](55)Cf[Cb2–C–Cg](7) 549 474 475 u[Cg–C](55)Cn[Cb2–C](16)

415 425 – n[C–Cg](45)Cf[Ca–Cb1–Cb2](17)C

f[Cb2–C–Cg](12)

450 425 – n[C–Cg](41)Cu[Cg–C](10)

361 325 380 t[CaCa](30)Cf[Cb1–Cb2–H](14)Cf[Cb2–

C–Cg](12)

355 325 380 f[Cb2–C–Cg](28)Cf[Ca–Cb1–

Cb2](24)Ct[CaCa](10)

245 225 – f[CaCb1](29)Cf[Cg–CaCa](24)Ct[Cb1–

Cb2](11)

226 225 – f[CaCa–Cb1](29)Cf[Cg–CaCa](24)C

t[Cb2–C](11)

151 153 165 t[Cb2–C](33)Ct[Ca–Cb1](20) 146 153 165 t[C–Cg](78)Ct[CaCa](8)

136 130 – t[C–Cg](90) 117 130 – t[CaCa](35)Ct[C–Cg](21)

Note: (1) All frequencies are in cmK1. (2) Observed frequencies of IR and Raman are taken from Refs. [12,14], respectively.
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methyl deformation mode is assigned to the band at 1450 cmK1

in infrared spectra, and it is calculated at 1443 cmK1. The

474 cmK1 band calculated at 476 cmK1 is predominantly a

CH3 out of plane bending. Bands at 1034, 993 and 950 cmK1

are mixed modes containing contributions of the CH3 and CH2

rocking and C–C stretching. C–H out of plane bending is

responsible for well known band at 870 cmK1 in b-TPI. Bands
which appear in the region 1100–900 cmK1 are associated with

C–C skeleton stretch. C–H in plane deformation band is

observed at 1212 cmK1 in IR spectra and it is calculated at

1210 cmK1 as a mode mixed with CH2 twist.
3.3. Correlation of observed and calculated a- and b-TPI

infrared frequencies

A comparison of calculated PED of both the crystal forms

shows several differences between them (Table 4). These

differences in addition to the environmental factors could arise
only from different contents in the unit cell of a-TPI, which
contains two residues in a repeat unit and different geometrical

parameters. From Table 3 it is obvious that the main difference

between the two forms is in the region of CH3 in plane bending

and C–C stretch, which appear at 1348 and 1340 cmK1 for

b-TPI and a-TPI, respectively. In plane bending (aC–H) was

assigned at 1150 cmK1 for both forms, by previous workers

[22]; which in the present work is separately assigned at

1193 cmK1 (a-form) and 1211 cmK1 (b-form). These are in

good agreement with the observed peaks at 1207 cmK1 (a-
form) and 1215 cmK1 (b-form) in IR spectra. CH3 and CH2

symmetric stretching differ by 21 and 36 wave numbers,

respectively.
3.4. Characteristic features of dispersion curves

Dispersion curves provide knowledge of the degree of

coupling and information concerning the dependence of the



Table 4

Correlation of observed and calculated a- and b-TPI infrared frequencies

Assignments Frequency (cmK1)

b Polymorphic form (b-TPI) a Polymorphic form (a-TPI)

Obs. (IR) Cal. (IR) Obs. (IR) Cal. (IR)

CH3 symmetric stretch 2906 2896 2872 2875

CH2 asymmetric stretch 2914 2914 2879 2878

CH3 in plane bendingCCH2 twist (a form) 1348 1348 1340 1340

C–C stretchCCH3 in plane bending (b-form) CH in plane bending 1212 1211 1205 1193

C–C stretchCCH3 rocking 997 993 1030 1032

CH2 rocking 750 751 750 754

Note: Observed frequencies are taken from Ref. [12].
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Fig. 4. Comparison of dispersion curves of a- and b-TPI below 760 cmK1.
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frequency of a given mode upon the sequence length of an

ordered conformation. They are also useful in calculating the

density of phonon states, which in turn can be used for obtaining

thermodynamic properties, such as specific heat, entropy,

enthalpy and free energy. It has been observed that the intra

molecular interactions (covalent, non-bonded) are generally

stronger than the intermolecular interactions (hydrogen bonding

and non-bonded). Crystal field only leads to splitting near

the zone center and zone boundary. The basic profile of the

dispersion curves remains more or less unaltered. Thus, the

study of phonon dispersion in polymeric system is an important

study. The modes that show large dispersion are either the

torsional or rocking mode. Dispersion curves for frequencies

below 1410 cmK1are plotted in Figs. 2(a) and 3(a), because the

modes above 1410 cmK1 are non-dispersive. Mode at

1389 cmK1 due to CH3 symmetric in plane bending disperses

to 1407 cmK1. The mode at 1389 cmK1 is almost constant till

delta is equal to 0.45p. With further increase in d, this in plane

bending mode mixes with (CaC–H) in plane bending and gets

coupled. This coupling is responsible for the rising slope of

dispersion curve. Band at 1348 cmK1 at the zone center, is a

mixed mode consisting 30% contribution of CH2 twisting and

22% contribution of C–C stretching. On moving towards the

zone boundary; at dZ0.37p, CH3 bending mode mixes with

n(C–C) and it rises to 1357 cmK1. In plane (CaC–H) bending

appears at 1210 cmK1 at the zone center and its contribution

progressively falls down with increase in delta value. During its

progression it mixes with CH2 twisting and this energy sharing

may be responsible for its reduced dispersion. CH2 twisting

mode at 1152 cmK1 at dZ0; disperses by 68 wave numbers.

This downward dispersion may be again due to the sharing of

energy with C–C stretching (20–39%) and with CH2 twisting

(18–8%). Peak at 879 cmK1 is also due to out of plane bending

mode of (CaC–H) with PED u[H–Ca](37)Cf[Cb1–Cb2–

H](23)Cf[H–Cb2–C](14) at the zone center. The other

dispersive modes and their PEDs are shown in Table 3. Bands

below 400 cmK1 are mainly torsional vibrations and they are

heavily mixed with in plane bending [(C–C–C), (C–CaC),

(CaC–C)]. The PED of (CaC) torsional vibration (361 cmK1)

is t[CaCa](30)Cf[Cb1–Cb2–H](14)Cf[Cb2–C–Cg](12) at the

zone center and it reduces to 355 cmK1 at the zone boundary

f[Cb2–C–Cg](28)Cf[Ca–Cb1–Cb2](24)Ct[CaCa](10). The

only other mode, which deserves to be mentioned, is the

band at 151 cmK1, which goes through region of high density-
of-states at 213 cmK1 and, finally dips to 146 cmK1.

An interesting feature is displayed by two acoustic modes

which repel each other at dZ0.78p. Their frequencies are 96

and 86 cmK1. As expected they exchange PEDs at the point of

repulsion. Such exchange of PED and repulsion are indicative of

themodes belonging to different symmetry. This is almost like a

collision between two quasi particles, which have the same

momentum and exchange their energies after collision. The

placement of regions of high density-of-states at dZ0.50 and

0.75 also refer to some internal symmetry points in the energy

momentum space and are known as vonHove type singularities.

No crossing is present in the dispersive profile of the modes.
3.5. Comparison between dispersion curves

Dispersion profiles of two isolated polymorphic forms

without any intermolecular interactions are shown in Fig. 4. A

comparison of four acoustic modes in the two forms shows that

they have the same general profile, but the peak positions in

these differ. The only other difference is the repulsion between

the two acoustic modes at dZ0.78p, point at which they repel

and exchange their PEDs. Such repulsion is not present in
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a-polymeric form. The other major difference is in the

dispersion profile of the modes, which appear at 715 and

576 cmK1 in the b-polymeric form. This mode converges to

652 cmK1 as they progress from the zone center to the zone

boundary. The corresponding mode in a polymorphic form is

present at 685 cmK1(dZ0) and 600 cmK1(dZp). To a smaller

extent same features are observed in the two lower dispersion

curves of C–CH3 out of plane bending mode, which converge

at 506 cmK1. This mode is of almost non-dispersive behavior

for a-TPI and disperses by 73 wave numbers for b-TPI. As
emphasized earlier, this difference in dispersion curve is purely

because of different geometry and consequently different

interactions. One of the major differences in the two forms is

the appearance of several regions of high density of states, in

b-form but relatively few in a-form. In b-form, they appear at

521, 317, 256, 213, 100 and 85. These bands have not been

assigned to any other normal mode and are relatively weak in

strength. In the a-form, they are few in number and generally

appear below 150 cmK1. Since, no spectral data is available in

this region it is difficult to make any specific comment on them.

3.6. Frequency distribution function and heat capacity

The frequency distribution function (density-of-states);

which are inverse of the slope of the dispersion curves are

shown in Figs. 2(b) and 3(b). The peaks correspond to the

regions of high density-of-states. The frequency distribution

function shows how the energy is distributed among various

branches of the normal modes. This knowledge of density of

states is related to thermodynamic properties like heat capacity,

enthalpy, etc. of the polymers. Heat capacity of b-TPI has been
calculated in the temperature range of 10–500 K. The

predictive values of the specific heat are shown in Fig. 5.

The specific heat variation is typical of a one-dimensional

system, which has an initial large variation but later on it slows

down. It may be added that the three-dimensional picture,

specially the lattice modes is not considered in this work. The

extension of the present calculations in the ultra low

temperature region would be meaningful when the calculation

is done with the three-dimensional system. This problem is
very difficult not only in terms of prohibitive dimensionality

but also in terms of potential field. Many interactions would be

even difficult to visualize. In spite of several such limitations

involved in the vibrational dynamics and concomitant

thermodynamic behavior of polymeric systems, the work on

an isolated chain is always a useful starting point.
4. Conclusion

The spectral data for the two forms of trans-1,4-

polyisoprene (a and b polymorphic forms) can be satisfactorily

interpreted from the vibration dynamics based on Urey Bradley

force field and the profile of dispersion curves. Typical bands

characteristic of the two forms are identified. In addition, the

predictive values of heat capacity show typical variation for a

one-dimensional polymeric system. The characteristic features

such as repulsion of dispersion curves are well interpreted.
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